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The function of a healthy ureter is analyzed in terms of a fluid-mechanical model. 
To the extent that the Reynolds number is of the order of one, the fundamental 
equations are shown to reduce to those of the theory of lubrication. It is found 
that from the point of view of the pressure variation with time (the urometro- 
gram) the important part of the peristaltic wave is the constricting part. For 
this reason this part of the wave is represented with an algebraic expression of 
the form h - x" making it possible to find closed form solutions. Using Fourier 
analysis in defining the complete wave shape of the ureter it was also possible 
to obtain numerical solutions. For both cases it is shown that there is good 
agreement between the theoretical and experimental pressure distributions, 
this not being the case for sinusoidal wave shapes. An approximate equation for 
the flux is developed and a universal relation is presented connecting the maxi- 
mum pressure, flux and kimmatic behaviour of the ureter. 

1. Introduction 
In  1966 Latham investigated the fluid mechanics of peristaltic pumps and 

since then, other papers on the same subject have followed by Burns & Parkes 
(1967), Hanin (1968), Barton & Raynor (1968), Shapiro, Jaffrin & Weinberg 
(1969), and Yin & Fung (1969), among others. These papers are useful contribu- 
tions to  the understanding of peristaltic pumping, but their relevance to the 
problem of the ureter is not investigated by the authors. In  fact, the pressure 
distribution inside such a pump, which is important information when one 
examines the ureter, is not dealt with and furthermore, when this is done, it can 
be shown that the ureter does not function as a sinusoidal peristaltic pump. This 
was pointed out by Lykoudis (1 966) where the emphasis was not in developing a 
peristaltic pump from an engineering point of view (where, for instance, its 
mechanical efficiency would be important) but rather in trying to understand 
what peristaltic motion meant to the ureter. For this reason the urometrogram, 
which is the hydraulic signature of the ureter, became the object of interest 
since this has been the primary source of hydraulic information obtained by all 
urologists over many years. In  this papert an attempt will be made to discuss the 

t The present paper should be considered a companion of the work by Lykoudis (1969) 
in which the presentation is made having in mind the urologist and where the mathematics 
presented here, are absent. 
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function of the ureter using the urometrogram as the fundamental criterion 
against which all fluid mechanical theories will be tested.? In  building up such 
theories the following physiological data related to the function of a healthy 
ureter will be accepted: (a )  Timewise, at any given point inside the ureter the 
pressure remains constant at the level of about 4mmHg (this is the so-called 
resting pressure) and then suddenly rises to a peak of the order of 30 mm Hg to 
fall abruptly again to the level of the resting pressure. (b )  The resting pressure at  
all points inside the ureter is the same. There is no average pressure gradient 
favourable or adverse that exists in the healthy ureter. (The case of reflux for 
which an adverse pressure gradient might exist, as is explainedin Bergman (I 967), 
will not be considered here.) (c) The peristaltic motion of the ureter does not 
produce pressures lower than the resting pressure. (d )  Inasmuch as one can judge 
from radiological evidence, the collapsed part of the ureter appears to be totally 
occluded. 

It will be shown here that because of the nature of these data the fundamental 
fluid-mechanical equations reduce to those of the classical theory of lubrication. 
The time dependence of the problem does not enter through the non-steady 
inertial term (since the inertia forces are found to be very small and hence 
negligible) but only through the time dependence ascribed to the moving 
boundary. The results of the theoretical analysis will be applied to the actual 
kinematic and geometric data of the human ureter and it will be seen that they 
are compatible with observations. It will also be shown that sinusoidal pumps of 
the type described by Latham (1966) and Shapiro et ab. (1969) are not capable of 
describing the actual function of the ureter. 

2. Governing equations and numerical solution 
First, we recognize that the working medium (urine) is incompressible and 

thus behaves dynamically as water does. The forces present in any fluid-mechani- 
cal system are the forces due to inertia, pressure, and viscosity which at  any 
given time must be in balance.$ A great simplification occurs if we make an 
estimate of the Reynolds number. 

For the ureter the Reynolds number is given by the following expression 

Re = ca2/vh, (1) 

where c is the wave speed, a the characteristic length in radial direction, v the 
kinematic viscosity, and h the wavelength (see figure 1). Introduction of some 
typical values pertaining to the ureter, c = 3 cm/sec, a = 1.5 mm, h = 15 cm and 
v = 0.007 cm2/sec (this is the viscosity of water at  40 "C, since urine is essentially 
water) gives Re = 0.65. This is an average value, while in extreme cases the 
Reynolds number might go as high as 1.5. Because of this, one can feel somewhat 
confident in neglecting the inertia forces, so that the forces due to  pressure must 
balance those due to viscosity. Assuming also that h 9 a we can write the 

t The interested reader will find more information describing the physiology and 

$ The role played by the gravitational forces is examined by Lykoudis (1969). 
function of the ureter in the works by Kiil (1957) and Bergman (1967). 
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equations of conservation of momentum in an axisymmetric co-ordinate system 
moving with the wave shape at  speed c as follows: 

aP 
ar and - = 0 or p = p ( x ) .  

The equation of conservation of mass is given by 

au av v -+-+- = 0. 
ax ar r 

c 
c 

FIGURE 1. Co-ordinate system and geometry. 

The boundary conditions in this moving co-ordinate system are: 

u = - c  a t  r = h ,  

aupr = 0 at r = 0, 

(4) 

v = O  at  r = 0 .  ( 7 )  

Since the pressure is only a function of x, (2) can be directly integrated twice 
using the boundary conditions. We obtain 

Equation (8) gives the axial velocity of the fluid in the moving system in terms of 
the local pressure gradient. As in the theory of lubrication (Schlichting 1960) this 
pressure gradient has to be found from an expression for the volume flow which is 
constant in this moving co-ordinate system. So 

Substitution of (8) and integration gives 

- dP = --(q+7rch2). 8P 
dx rh4 
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The radial velocity v is found by integrating (4) with respect to r ,  after substitu- 
tion of au/ax. This last one is found from (8) with (10) inserted. Equation (10) 
expresses the pressure gradient dpldx in terms of the constant, however unknown, 
flux q. In order to find q we have to set a condition for the pressure distribution 
along the tube. This pressure distribution is given by 

Here pa  is the pressure at x = 0. Guided by the information from urometrograms 
we assume that the pressure gradient over a wavelength is zero or 

AP, = PA -Po = j - o A g d x  = 0. 

Substitution of (10) in (12) gives the following expression for q 

Up to this point, it was not necessary to specify the shape of the wall, h. In the 
work by others, mentioned before, h was always taken to be sinusoidal which 
made it possible to obtain algebraic solutions for the integrals involved. 

A comment must now be made with respect to the assumed radial motion of 
the boundary of the ureter. X-ray urography shows that for normal ureters the 
portion of the length which corresponds to the contracted phase is longer than 
the one corresponding to the relaxed phase. Also, as will be shown later, the 
assumption of h being sinusoidal does not produce a urometrogram as they are 
observed. It was therefore decided to postulate a wave shape more compatible 
with the observations and to judge it through the obtained pressure distribution. 

It is obvious that in the case of an arbitrary wave shape, an algebraic solution 
of the integrals is impossible, but it is possible to obtain urometxograms through 
numerical integration by a computer. In  order to do so we have defined the 
geometry and the timewise behaviour of the ureter through Fourier analysis. 
The pressure distribution relative to the resting pressure has then been obtained 
from (11) after substitution of (10) and (13). The numerical results are compared 
with two examples taken from Kiil(l957) for which information about the wave 
speed is available. The results are given in figure 2 .  Figure 2 (a) shows the shape 
of the ureter on a more or less real scale, while figure 2 ( b )  shows the same with 
the radial scale highly exaggerated for the purpose of illustration. The theoreti- 
cally and experimentally obtained urometrograms are given in figure 2 (c). 

Several numerical integrations of the type mentioned above have been pro- 
duced and we have come to the following conclusions. The pressure is very much 
different from the resting pressure (equal to zero in figure 2 )  only during the 
contraction phase when the lumen is very narrow. At this point, we recall that in 
all lubrication theories the pressure rises abruptly only when the lubrication film 
is very thin. 
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It follows from (10) that for a general wave shape the pressure will exhibit two 
extrema, located at  those two places where the axial velocity (measured in a 
stationary frame of reference) is zero. In  this context the maximum pressure 
occurs during the collapsing phase (and before the minimal diameter is reached) 
while the minimum pressure occurs at  the relaxation phase of the ureter and a t  a 
point which will have the same diameter as the diameter corresponding to the 
maximum pressure.? In  the case of the ureter this means that the pressure will 
dip below the resting pressure. However, this is normally not observed in 
urometrograms, whioh leads us to believe that such negative pressures are too 
small to be identified. On the other hand, from a theoretical point of view one can 
always choose the wave shape in such a fashion as to make this negative pressure 
as small as desired. This was done for instance in figure 2 where a small negative 
pressure can be seen. 
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FIGURE 2. Experimental and theoretical urometrograms as obtained from numerical 
calculations. -, theory (numerical solution); ---, -. -, experiment (Kiil 1957, p. 59). 

From the above we learn that as far as the urometrogram is concerned the 
exact kinematic behaviour of the ureter is important only when the motion is in 
the almost fully constricted phase.1 On the other hand, because of the fact that 
on one side of the wave the lumen is practically fully occluded, for flux calcula- 
tions, only the volume of the urine pool is significant. 

7 The presence of the maximum and minimum in the pressure distribution is also found 
for instance in the theory of rolling bearings; in this case the negative pressures are dis- 
regarded or circumvented by the use of appropriate boundary conditions as explained in 
Cameron (1966). 

$ This was also pointed out by Lykoudis (1966, 1969). 
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Because of these considerations and in order to obtain a better physical 
understanding it was decided to look for a closed form solution of the problem, 
using some of the above findings. 

3. Lubrication theory solution 
Let us assume a simple relation of the form h N xn for the constriction phase 

where n is an arbitrary constant. In  such a case, the only condition implied on n 
will be that it should be larger than or equal to one since for n < 1 the curvature 
during the final stages of collapse is not compatible with physiological observa- 
tion. The higher value for n, the flatter the ureter at the point of its smaller radius. 
This choice of h - xn is guided by two considerations, the first being that Lykoudis 
(1966) found that if one assumes a stationary collapsing tube in which the time 
behaviour of the boundary shortly before its total collapse to the minimum 
radius was sinusoidal,? this sinusoidal hypothesis could be approximated by 
h N x2.  Secondly, and this is shown in the footnote following (30), for a sinusoidal 
peristaltic pump, the assumption of h N x2 is also a good approximation in 
obtaining the maximum pressure, which occurs shortly before the minimal 
diameter is reached. 

Before entering into the details of computation, let us apply an order of magni- 
tude argument in an effort to derive a dimensionally correct result for the maxi- 
mum pressure. 

Imagine that during its contraction the ureter collapses with a velocity V while 
at the same time the wave shape travels in the axial direction with the wave speed 
c. In  order to fix further the ideas, consider the geometry of figure 1. We see 
there that we have two characteristic dimensions in the Y direction, the minimum 
radius b and the maximum radius R which is equal to (a + b) .  In  this case a is the 
amplitude of the peristaltic wave. Since in the case of the ureter, b is much smaller 
than R, the amount of fluid displaced in the Y direction with the velocity of the 
boundary V will go out through a cross-sectional area corresponding to the 
radius h, at a station x, rather than b.  An order of magnitude argument applied to 
the equation of conservation of mass yields 

u N 2Vxlh. (14) 
On the other hand, the viscous forces per unit volume acting in the direction X 

will be based on the rate of change of the velocity U within the radius b so that 
the equation for the conservation of momentum in the direction y yields 

We now assume that the geometry of the boundary during its collapse is given 
by the relation 

In the above, TI is the time in which h changes from b to a + b or Tl = h,/c. We set 

h = b + a(t/T1)". (16) 

and note that x = ct. 
t In contrast to this hypothesis being valid for all of the ureter. 
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Hence, (15) becomes pc2 tn+1 

A p w -  b2 [@/a) TY +TI ' ( 1 8 )  

We are now interested in obtaining the maximum of Ap timewise. This will 
occur where d(Ap)/dt = 0. After some algebra, we .find the following relations 
(constants apart) : 

Apmax --( P &  )2(;)2-1'n, 

Tl a 

or 

The exact analysis which follows will only determine the constant of pro- 
portionality. The first conclusion from this formula is that since A,, TI and a are 
fixed, the maximum pressure is inversely proportional to a power of the minimum 
radius b which at  most could be the second (corresponds to n-too), and at least 
would be equal to one (corresponding to n = 1). 

Let us now proceed with the details of the problem. In the moving co-ordinate 

(21)  h = b + u ( x / ~ , ) ~ .  system h is defined by 

The condition on p,  given by (12)  is changed into 

As a result of this h in (13)  is changed into A, and after substitution of (21 ) ,  

6n2 
q = -  m b 2 ,  

( 3 n -  1 )  ( 2 n -  1 )  

integration gives 

while we have assumed that a+b 9 b. With (23)  the expression for the local 
pressure gradient becomes 

!!!?=-%[hZ- 6n2 
ax h4 ( 3 n -  1 )  ( 2 n -  l)"]' 

Insertion in (1 1) gives us the pressure distribution 

(24) 

where h is given by (21). Through integration we obtain an analytic expression 
for the pressure distribution 

X ( 3 n -  l ) x  
p ,  = po+ 8pcb2 3nb[b+a(x/h,)n]3f6n2b2[b+a(x/hl)~]2 

Figure 3 shows the shape of the boundary and the pressure distribution relative 
to the resting pressure, Apz = px  -po, calculated for a range of values of n and 
one value for a, b, A, and C .  We see that Apmax and the length over which Apx 
is larger than zero are highly dependent on n. Apmax can be found in the following 
way. Ap is maximal at  the location x = X m a x  for which dpldx = 0. This condition 
gives 6n2 

- b2, 
2 P hmax = -- - 

nc  ( 3 n -  1 )  (2%- 1 )  
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which gives US the radius hma, a t  x = Xmax. But since we know hmax from (21) 
we can find an expression for Xmax 

Xmax = ~ ~ ( ~ ) " "  [ ( (3n- 1 )  6n2 (2n-  1 )  )"- 1 ] l i n .  

Substitution of (27)  and ( 2 8 )  into the pressure distribution (26)  makes it possible 
to give an expression for the maximum pressure (relative to  the resting pressure) 

6n2 - 1] l i n  [ ( ( 3n - 1 )  (2n  - 1) 
where g(n) = - 

6n2 

25 t 

X 

FIGURE 3. The geometry and pressure distribution as a function of the exponent n according 
to lubrication theory. a = 2.0 mm, b/a = 0.01, c = 30 mmlsec, h, = 180 mm, h = b +a (z/hJn. 

We see that (29) is essentially the same as (20).  The rigorous analysis provided 
only the constant g(n) which is important in case of numerical calculations, but 
does not add to the understanding of the physics of the problem.? 

t In the case of rn = 2 ,  g ( n )  = 1.05. An exact analysis for a sinusoidal w-ave shows that in 
the notation of the present work (h  = 2h,) the maximum pressure is given by 
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1 2  3 4 5 6 7 8 9 10 
n 

FIGURE 4. Solution of transcendental equation which determines 
for every alb the power n for which A,,, is maximal. 
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FIGURE 5. The normalized prcssure distribution AplAp,,, as a function of n for a fixed bla. 
The maxima are located a t  the same 2. a = 2 mm, b/a = 0.01, c = 30mm/sec, A, = 180mm. 
_ _ _  , n = 2 ;  -, n = 4; -.-, n = 6. 
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In  order to find the maximum of Apmax we have to  differentiate (29) with 
respect t o  n. This gives a complicated transcendental equation which was 
solved on the computer. The solution is given in figure 4, where for every value of 
all) one can find the n for which Apmax = (Apmax)max.  

In  order to  investigate the influence of n and the geometry on the shape of the 
pressure curves, aside from a change in the maximum pressure, these pressure 
distributions were normalized with their Ap,,, and their maxima were put at 
the same location. From (26) and (29) one can find that AplApmax is a function of 

" 
0 30 60 90 120 150 

X 

FIGURE 6. Tho normalized pressure distribution Ap/Apmax as a function of b/a for a fixed n. 
The maxima are located at the same 2. a = 2 mm, c = 30 mm/sec, A, = 180 mm, n = 4. 
-. - , b/a = 0.02; -, b/a = 0-01; - - -, bja = 0-005. 

n, bla and x/A, only. Figure 5 shows the normalized pressure as a function ofn for 
the same values of a, b and A, as used in figure 3. It can be seen that the width of 
the pressure pulse increases distinctly with n, while the slope on both sides 
becomes less steep. Figure 6 gives Ap/Apmax as a function of bla for n = 4 and 
again the same values for a and A,. Here one can observe that the width decreases 
and the slope steepens with diminishing bla. It follows from these figures that the 
change in Apmax is much more pronounced with a change in b/a than in n. It is 
therefore concluded that in general, the order of magnitude of Apmax is deter- 
mined by bla and the shape of the curve by n. 

4. Comparison of the theory with experimental observation 
To test this simple solution with the observations by the urologist we again 

turn to Kiil(l957) for some data. Figure 7 shows an experimental urometrogram 
with one obtained from the theory as a function of time. The conversion from x 
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in the moving co-ordinate system to t in a fixed system is done by realizing that 
t = - (x +z) /c  (where z is the co-ordinate along the tube axis in a fixed system). 
After A,, a and c are fixed compatible with X-ray observations, it is found that 
bla has to be of the order of l / l O O  to obbain Apm,, and that in this range the shape 
requires n to  be equal to 4. We see that both urometrograms coincide fairly well 
except for the tail. However, we believe this part of the pressure distribution to be 
connected with the initial expansion of the ureter after its collapse. It is believed 
that in this region, which is not covered by the theory, the presence of the catheter 

30 t 

0 1 2 3 4 5 6 7  

Sec 

FIGURE 7. Experimental and theoretical urometrograms as obtained from lubrication 
theory. a = 2*35mm, b = 0.02mm, c = 30mm/sec, hl = 250mm, TZ = 4. -, present 
theory; -.-, experiment (Kiil 1957, p. 59). 

becomes important. Figure 8 shows the corresponding theoretical axial velocity 
distribution. Comparison with experimental results is impossible since measure- 
ments of this type have not been made. 

In  order to see what a peristaltic pump of the type described by Shapiro et al. 
(1969) produces as a urometrogram, their theory has been used to compute the 
pressure variation with time for the same wavelength and geometry found 
compatible with the real urometrogram of figure 2. It is seen in figure 9 that apart 
from the negative pressures, the peak pressure Apmax is much smaller for the 
sinusoidal ureter. It is also seen there that the time over which the pressure 
stands much above the resting pressure is much smaller than the one needed to 
correlate with the actual urometrogram. This is adequate proof that the ureter 
does not behave as a sinusoidal wave. 

From the example cited it is seen that a fairly large contraction ratio is needed 
in order to  obtain the peak pressures recorded in urometrograms. This ratio 
@/a) seems of the order of l / l O O .  This, of course, is impossible to measure, not 
only because of the small diameters involved, but also because of the fact that the 
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ureter in its collapsed state has a starfish-shaped cross-section. At  first sight this is 
an alarming result since the size of the catheters used for the measurement of 
pressures inside ureters is more than lmm in diameter whereas the theory 
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FIGURE 8. Theoretical axial velocity distribution as obtained from lubrication theory. 
a = 2.35mm, b = 0.02 mm, c = 3Omm/scc, A, = 250mm, n = 4. 

FIGURE 9. Theoretical urometrogram according to the sinusoidal theory. 

dictates minimum lumens of the order of 0.05 mm! The correct interpretation of 
this diameter is that there is a film of urine around the catheter which behaves like 
a thin layer of oil? capable of sustaining high pressures as indeed we observe in 

t See, for example, Prandtl (1954, pp. 158) where an oil film of 0.0333 mm can sustain LL. 

pressure of 23,000 mm Hg ! Such films are difficult to measure, but their existencc is 
postulated successfully in design. 
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load carrying oil bearings. The fundamental theory of the ureter is a direct 
example of such lubrication theories. 

A further check of the findings of this work can be made in terms of recently 
obtained experimental information on the time elapsed between the beginning 
of the occlusion of the ureter and the time a t  which the maximum pressure 
appears. For dogs these data have been obtained by Barry (1969) and seem to 
indicate that this time interval is of the order of 1.6 seconds. For the two cases 
which were taken from Kiil (1957) and involve humans our theory gives 5 
seconds. Quantitative comparison of these results, however, should not be 
attempted, since for the experiment no data are given regarding wave speed, 
contraction length and time between two contractions. More important is that a 
time interval was found indeed even before it was experimentally verified, since 
some urologists have thought it to be an artifact? introduced by the measure- 
ment itself. It seems that our analysis leaves little doubt regarding its reality and 
explanation in terms of the present theory. In fact, i t  is a feature present in all 
lubrication film theories. 

5. Functional relation between maximum pressure and flux 
In  order to evaluate further some of the theoretical findings presented in this 

work, we need to recast some of the previously found results into quantities that 
are more directly amenable to observations, especially of the type which a 
urologist measures. One of these observations is the urine flux, and so we have to 
evaluate a theoretical expression for this. 

In  a stationary co-ordinate system the flux Q at a certain cross-section is given by 

Q = q+7rch2. ( 3 1 )  

Averaged over a total wavelength this becomes 

Evaluation of the integrals after insertion of ( 2 1 )  and ( 2 3 )  gives 

6n2 ] + y [ - ) + 2 a b A 2  
(3%- 1) (2%- 1) 

where A, = A-A,. 

Since b < a we make the following approximation: 

or 0 N ma, .  (35) 

Apmax ph~1+112n/b2--lln Q1/2n, ( 3 6 )  

or Apmrtx N pT (c2+1/2n/b2-1'n) ( 1/&1/2"). 137) 

Using ( 3 5 )  we can write ( 2 9 )  in the following form 

t See the discussion in Hydrodynamics of the Ureter (Proceedings of the Workshop on 
the Hydrodynamics of the Upper Urinary Tract). 

43 F L M  43 
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These equations tell us that for any normal ureter there is a relation that binds 
together five quantities, Apmax, b,  C, Q, and h or T. This observation is very 
instructive because it indicates that any effort to correlate only two of the above 
quantities when the others are not controlled and fixed is impossible. This then 
explains why observers have found it possible to measure an increased or de- 
creased frequency of contraction with increased Q. For instance, in dealing with 
this problem Kiil(l957, p. 70) makes the following statement: “The frequencyof 
ureteral contractions gives no information about the total urine flow.. . . The 
frequency of ureteral contractions did not give any information about the urine 
flow issuing from each ureter. The ureter with the highest rate of contractions 
might transport the least volume of urine. The frequencies of ureteral contrac- 
tions might be very different a t  equal flows.. . . Most of the data revealed a trend 
towards more frequent ureteral contractions when the urine flow increased.. . . 
In almost no case were the changes in urine flow and the changes in the rate of 
ureteral contractions directly proportional.” 

Unfortunately, there are not adequate data? known to the authors which 
could serve for the determination of the constant of proportionality and the free 
parameter n of (36) and (37). If we had such information, we could perhaps derive 
a universal relation for the ureter which would link all of its fluid-mechanical 
parameters, notwithstanding the range over which they may take from instance 
to instance. 
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